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Summary. In high-Z atoms, quantum electrodynamic (QED) corrections are an 
important component in the theoretical prediction o f  atomic energy levels. The 
main QED effects in electronic atoms are the one-electron self-energy and 
vacuum-polarization corrections which are well known. At the next level of 
precision, estimates of  the effect of  electron interactions on the self energy and 
higher-order effects in two exchanged photon corrections are necessary. These 
corrections can be evaluated within the framework of  QED in the bound 
interaction picture. For  high-Z few-electron atoms, this approach provides a 
rapidly converging series in 1/Z for the corrections, which is the generalization of  
the well-known relativistic 1/Z  expansion methods. This paper describes recent 
work on the effect of electron interactions on the self energy. The QED effects 
are particularly important for the theory for lithiumlike uranium where an 
accurate measurement of  the Lamb shift has been made, as well as for numerous 
other cases where systematic differences appear between theory that does not 
include these QED effects and experiment. 
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1. Introduction 

The basis for atomic structure theory presently appears to be bound-state 
quantum electrodynamics (QED). With suitable approximations to the perturba- 
tion expansion and infinite summations of  subsets of Feynman diagrams, one 
can recover the usual starting points for calculations such as the Schr6dinger 
equation or the no-pair~relativistic Hamiltonian for many-electron systems. This 
workshop is a testimony to the level of  sophistication to which calculations based 
on such equations have been developed. 

One might ask the complementary question: If  no approximations whatso- 
ever are made to the equations of  bound-state QED, how far can the calculations 
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of atomic structure be carried out? The immediate answer is not very far at all, 
but progress is being made in this approach. This paper describes current work 
along these lines. 

High-Z few-electron atoms are systems that are highly suitable for such a 
study for several reasons. First, in high-Z systems the QED effects, i.e., effects 
that require infinite renormalization and effects that go beyond the no-pair 
relativistic Hamiltonian, are enhanced relative to binding and correlation effects. 
Second, atomic structure perturbation theory, which is closely coupled to QED 
perturbation theory, converges rapidly in these systems, and correlation effects 
are small. Third, and not least, experiments are being done on such systems, so 
the validity of the calculations can be checked. An example of an experiment on 
an extreme system of this kind is a recent measurement of the 22S1/2-22p1/2 
splitting in lithiumlike uranium done at the Bevalac at Lawrence Berkeley 
Laboratory [1]. For this system, the relativistic many-body perturbation theory 
(RMBPT) prediction for the splitting is approximately 322 eV and the QED 
correction to the splitting is of order - 4 0  eV. 

2. Basic theory 

The theory, without approximations, is based on the bound-interaction (or 
Furry) picture in QED [2]. This approach is described elsewhere, so the details 
will not be repeated here [3, 4]. The starting point for uranium ions is the Dirac 
equation for electrons in the field of a bare Z = 92 nucleus. Interactions 
including QED effects are then perturbations, and level shifts are obtained by 
applying the Gell-Mann, Low, and Sucher prescription to the perturbation 
expansion [5, 6]. The result is expressions for the level shift that can be loosely 
associated with bound-state Feynman diagrams. 

Enhancement of QED effects at high-Z is illustrated by comparing the 
approximate scaling of the QED effects: 

E(2) ,,~ o¢( ZoO 4mc 2 (1) QED 

to the order-of-magnitude of the second-order Coulomb splitting: 

E(~)~lr-~zl..,~(Z~)mc2, (2) 

which gives 

E(C 2) ,~, (2~)3.  (3) 

This ratio is consistent with the order-of-magnitude of the calculated numbers 
for the RMBPT result and the QED correction mentioned above. 

The rapid convergence of the perturbation expansion is illustrated by com- 
paring the order of magnitude of the fourth-order Coulomb energy correction: 

I o~ l ot ) [o~(ZoOmc2] 2 
E(~ ) ~ ~ Eo--H ~,2 (Ze)2mc2 -o~2mc 2 (4) 

to the second-order Coulomb splitting given above by writing the ratio: 

E~) 1 
E~ ) Z" (5) 
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Fig. 1. Feynman diagrams for the bound-state vertex correction. The double lines represent propaga- 
tion of an electron in the nuclear Coulomb field. The wavy lines represent virtual photons 

m 

Fig. 2. Feynman diagrams for the first-order correction to the self energy of a bound electron by an 
external potential. The symbol x denotes the charge distribution that is the source of the external 
potential 

For few-electron systems, where these estimates are valid, and for high Z, where 
the ratio is small, perturbation theory converges rapidly. In such a case, the 
difficulty of doing the exact calculations is offset by the fact that only a few terms 
are numerically important, so concrete predictions are possible. 

This expansion is the generalization of the 1/Z expansion methods of Layzer 
and Bahcall [7] and of Dalgarno and Stewart [8]. This general approach has been 
discussed briefly by Bethe and Salpeter [9] and by Sucher [6], and more recent 
studies of non-QED electron-interaction corrections in this framework have been 
made by Ivanov, Ivanova, and Safronova [10]. 

In this approach the dominant corrections are given by the zero-order Dirac 
eigenvalues. The next corrections, second order in e, consist of the self-energy, 
vacuum polarization, and exchanged-photon correction. These corrections have 
been discussed in detail elsewhere [3]. 

The leading fourth-order corrections are the two-exchanged photon correc- 
tion and the one-exchanged-photon vertex and vacuum polarization corrections. 
The non-QED exchanged-photon corrections, to a good approximation, are 
included in the RMBPT result of Blundell, Johnson, and Sapirstein [11]. We 
expect that the main contribution to the vertex correction, corresponding to the 
Feynman diagram in Fig. 1, will be of the form of a screening correction, 
corresponding to the diagram in Fig. 2, where the other electron provides an 
effective potential correction to the one-electron self-energy diagram. Such a 
calculation is described in the following sections. 

3. Screening effect 

The starting point for this calculation is the well-known expression for the 
self-energy level shift EsE, valid for an arbitrary fixed external potential, that can 
be written as the sum EsE = EL + En of a low-energy part E L and a high-energy 
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part EH [12], where (in units in which h = c = me = 1) 

sin[(E, - z)x21] 
X (~j/V 2 • V , -  v i v a )  ~ n =  

and 

(6) 

E.= -~ dz d~2 d~1¢~(22)~,G(2~, ~, z)~"G(2~) e-~' 
H X21 

-- &n f d2¢~(2)fl¢,(2) (7) 

and where b = - i [ (E ,  - z ) 2 +  i6] in, Re(b) > 0. In these expressions, ¢p, and E, 
are the eigenfunction and eigenvalue of the Dirac equation for the bound state 
n, and G is the Green's function for the Dirac equation corresponding to the 
operator G = ( H -  z) -1, where H is the Dirac Hamiltonian. In the Dirac 
equation, the potential V is an arbitrary external potential that could be the 
Coulomb potential, or a more complicated potential that includes a screening 
correction ~ V. The contour C H extends from - i  oo to 0 - & and from 0 + & to 
+ io% with the appropriate branch of  b chosen in each case. 

In this calculation, the screening effect is regarded as a small change in the 
external potential with respect to the background Coulomb potential: / 

V(x) = Vc(x) + ,~V(x) (8) 

and an expression for the correction is obtained by expanding the constituents of  
the exact Eqs. (6) and (7) to first order in powers of 6V. The zeroth-order term 
in each case is just the self-energy correction corresponding to the Coulomb 
potential V o  The first-order correction 6E¢, ~) can be written as the sum of three 
terms that correspond to the dependence of  the level shift on 6 V through the 
bound-state energy E, :  

E, --,E, + (¢nl6Vl4;,> + " "  (9) 

the bound-state wave function ~,  : 

¢ _ ~ ¢ .  y <~,I6VIen> 
'¢n ~;~--G ~ + ' ' "  (10) 

and the Green's function G: 

G - - * G -  G6VG +.  • .. (11) 

These three terms give comparable numerical contributions to the total correc- 
tion. 

4. Singularities 

Here, we outline a road map of potential divergences that would create problems 
in the numerical work if no provision were made to take them into account. 
First, there are the usual ultraviolet divergences associated with the self-energy 
calculation and mass renormalization. These divergences cancel for an arbitrary 
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potential, so the starting expression is finite. However, the individual terms in the 
perturbation expansion can contain both infrared and ultraviolet divergences 
that ultimately cancel, but still require attention. 

In the high-energy part, the energy, wave function, and Green's function 
corrections all have ultraviolet divergences. The wave-function divergence in the 
main term cancels a similar divergence in the mass renormalization term that 
arises from the wave-function correction to that term. The divergence in the 
energy correction is canceled by an equal and opposite divergence in the Green's 
function correction. In each of these cases, we eliminated the divergence by the 
introduction of suitable subtraction terms. 

If the low-energy part were calculated in the Feynman gauge, there would be 
equal and opposite infrared divergences in the corresponding energy correction 
and Green's function correction. However, in the Coulomb-gauge-like form for 
the low-energy part employed in this calculation, the integrand in the low- 
frequency photon limit is suppressed, and there is no infrared singularity. 

In the low-energy part there is an additional spurious singularity in the 
principal-value integration. The energy correction to this term involves a deriva- 
tive with respect to energy, with the result that the poles in the principal-value 
integral become second-order poles. This case can be dealt with by numerical 
techniques analogous to the method applied to evaluate the principal-value 
integral in earlier work [13]. In the present case, it is sufficient to replace the 
principal-value integration by the original definition of the integral as a contour 
integral in order to identify the correct result. 

5. Numerical methods 

The numerical methods employed here are similar to those that have been 
applied in a Coulomb self-energy calculation [ 14]. A few points of departure are 
outlined here. 

The starting point for both the low-energy part and the high-energy part is 
to carry out an expansion of the electron Green's function in angular momentum 
eigenfunctions. This leads to an expression that consists of a contour integral 
over z, four radial coordinate integrals, and an infinite summation over x, the 
angular momentum quantum number. 

Each term in the sum over ~ contains radial Green's functions for the 
Coulomb field. Methods for calculating these to high precision are known [14]. 
In the case of wave-function corrections, reduced radial Green's functions are 
needed. There are methods described in the literature for calculating these 
functions [ 15]. However, we took advantage of the availability of the full Green's 
functions and calculated them by numerical interpolation. In particular, the 
reduced Green's function, defined by: 

GR()~2,:~,,En) = ~, ~bi(22)~b~(21) 
~,~E. Ei - E .  ' (12) 

can be obtained from the full Green's function, defined by: 
(~, ) 

G()~2, Xl, z) = ~ (13) 
• E i - -  Z ' 

with the aid of the limit: 

Gk(~2, ~,, En) = lira ½[G(22, 2 , ,  En + E) + G(22, :~,, E,, - E)]. (14) 
~--~0 
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In taking this limit, the terms with Ei = En vanish identically because of the 
symmetry of the expression. We calculate the limit numerically for the radial 
Green's functions with the analogous four point symmetric interpolation for- 
mula. 

The summation over • is a time-consuming part of the calculation; many 
terms (of order 103-104 ) are needed due to slow convergence of the sum. We 
dealt with this by analytically calculating a four-term asymptotic expansion of 
the Green's functions for large ]~], and summing these terms analytically in the 
large ]~] region in order to accelerate the convergence. 

An additional computer time saving measure was to evaluate the potential 
shift 6 V and the wave-function correction 6~b on a fixed grid and then employ a 
cubic spline interpolation to evaluate these functions for the numerical integra- 
tion. 

The numerical integration was carried out by Gaussian quadrature. 
It is useful in developing the computer code to have a known case on which 

to test the calculation, eliminate bugs, and check precision. Fortunately, there 
exists a natural test case for this calculation. In particular, if the value of Z in the 
Coulomb self energy is shifted by a small amount, the first-order correction is 
just the result corresponding to a perturbing potential proportional to the 
Coulomb potential. We took advantage of this fact to check the calculation 
extensively by comparing the effect of a Coulomb potential perturbation to the 
derivative with respect to Z of the known Coulomb self energy. In fact, this test 
was applied to each separate component of the calculation, such as the wave- 
function correction, or the correction to the Green's function. 

6. Model calculation 

For a demonstration calculation, we employ a model in which the screening 
potential for each electron is the sum over the spherically averaged potentials 
that arise from the charge distributions of the other electrons in the atom: 

where 

6 V~ (x) = ~ 6 V(J)(x) (15) 
J 

6w<J>(x=) dQ= 1 2- ,1 (16) 

and where ~bj is the unscreened Dirac hydrogenic wave function. Since the level 
shift is linear in the perturbing potential, the total energy shift 3E, for state n is 
just the sum over j of the energy shift 6E~ j) of level n due to screening by the 
electron in state j: 

6En = ~ 3E~ j). (17) 
j 

For lithiumlike uranium, examples of level shifts from preliminary results of this 
calculation are: 

ls22p 22p1/2: 2bE]~ ) + 23E~  ) + 26E~p s) = -8.90 eV 

ls22s 22S1/2: 23E~ ) + 26E~ 2s) + 26E~ ) = - 11.41 eV. 
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Table 1. Transition energy 

Contribution Value 

RMBPT 322.4 eV 
One-electron QED -- 42.8 eV 
Self-energy screening 2.5 eV 

Total theory 282.1 eV 

Experiment 280.41 (. 13) eV 
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In order to compare theory to experiment for the 22S~/2-2zP1/2 transition 
energy in lithiumlike uranium, we list the relativistic many-body perturbation° 
theory (RMBPT) calculation of the non-QED contributions done by Blundell, 
Johnson, and Sapirstein [11], the one-electron QED corrections (excluding the 
gross effect of the finite nuclear size which is contained in the RMBPT contribu- 
tion) [16], and the self-energy screening correction from the present work. The 
sum of these terms is compared to the experimental result of Schweppe et al. [1] 
in Table 1. 

The difference between theory and experiment is of the order of uncalculated 
theoretical contributions. These include the screening correction to the vacuum 
polarization that is expected to be of order - 1 _+ 1 eV, higher-order retardation 
contributions to the two-exchanged-photon corrections [17], and contributions 
to the vertex diagram that are not included in the screening approximation. 

Other estimates for the QED screening effects in this system include an 
empirical extrapolation from low Z [11], and models in which the self energy is 
represented by an effective potential in a multiconfiguration Dirac-Fock calcula- 
tion [ 18, 19]. 

7. Outlook 

Now that a demonstration calculation of screening corrections to the Coulomb 
field self energy has been carried out for excited states, a number of natural 
extensions of this work lie ahead. Results of similar calculations for lower Z are 
needed in order to check the corrections along isoelectronic sequences. Ulti- 
mately, one would hope to attack the problem of highly-correlated systems such 
as neutral helium. The techniques described here might be of use for this 
purpose. 

It would be useful for a broad range of applications, if the calculation of the 
effects of deviations from a Coulomb potential on the self-energy correction were 
formulated in such a way that a simple evaluation for a given deviation could be 
made. In particular, since the main correction is linear in the correction to the 
potential, it should be possible to write it as an integral of a function of the 
radial coordinate multiplied by the correction to the potential. In this way, it 
would be necessary to tabulate only one function for a given state and nuclear 
charge that would readily yield the level-shift correction to the self energy for any 
of a broad range of  corrections to the Coulomb potential. It should be possible 
to extract such a function in the context of the calculation described here. 
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Fig. 3. Feynman diagrams for a hydrogenic QED correction of order ~2 

Another by-product of this work is the possibility of evaluating other 
higher-order QED effects. For example, the diagram in which the potential 
correction considered above is replaced by a vacuum polarization bubble, as 
shown in Fig. 3, can be evaluated with essentially no additional development of 
techniques. 

It requires only a relatively mild generalization of the approach described 
here to evaluate the full bound-state vertex correction, which is a necessary step 
in a rigorous evaluation of atomic level shifts in QED. 
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